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Getting the Mass of the First Construction Climber Under 
900 Kg 

Larry Bartoszek, P.E.1 
Bartoszek Engineering, Aurora, IL, 60506 

 
In 2004 I presented a conceptual design for the drive system of the first construction 

climber as outlined in Edwards' and Westling's book on the Space Elevator.  My first design 
used non-spaceworthy components as placeholders to see how close to the mass budget I 
could come.  The first design was approximately a factor of three too heavy. 

The current design uses finite element analysis to minimize the mass of structural 
members to better fit into the mass budget.   

Some of the original concerns about the design are still problematic.  Axial gap motors in 
the necessary power range of 20kW and up have not been widely developed for Earth use yet 
because of recent economic and political conditions. 

This paper will describe the engineering effort to redesign the first construction climber 
and discuss some of the challenges to reach final engineering. 

 

I. Introduction 
HIS paper builds on the conceptual design of the traction drive of the first construction climber presented by the 
author at the 2004 International Space Elevator Conference in Washington, D.C.1  It compiles work done since 

2004 to lighten the structure because the initial conceptual design was 2.4 times too heavy to satisfy the mass 
budget.  Recent advances in the understanding of high cycle metal fatigue allow the relaxation of some of the design 
constraints used in the first conceptual design.  The paper also presents a mathematical analysis of the velocity 
profile of the climber subject to real power constraints and wheel material strength.  The math will show that not all 
of the requirements of the first construction climber can be satisfied simultaneously with currently existing motor 
technology.  The safety factor of the ribbon is also discussed in the context of the acceleration achievable by the 
climber.  Finally, some observations on the climber are presented from a mechanical engineering perspective about 
the location of the center of mass of the climber and how that could affect the ribbon. 

II. Theory of the traction drive of the Space Elevator Climber 
The design of the climber starts with the most general requirements.  The climber is supported by the ribbon 

using friction alone.  The support from friction comes from squeezing the ribbon between powered rolling elements 
and the coefficient of friction between the rollers and the ribbon.  The design of the traction drive in Edwards’ and 
Westlings’ book uses a tread wrapped around wheels similar to a tank’s design.  It is easy to show mathematically 
that the tread is not a useful addition to the design and must be eliminated from the conceptual design.  My original 
conceptual design used pairs of wheels clamped to each other with the ribbon in between. 

The parameter that determines how tightly the wheels must squeeze the ribbon is the coefficient of friction 
between the ribbon and wheels.  If the ribbon is too slippery it may not be possible to squeeze it hard enough to 
develop the traction needed to lift the climber. 

The theory starts with a free body diagram of a single wheel pair pushed against the ribbon as shown in Figure 1.  
The wheel on the opposite side of the ribbon is not shown, but it provides the symmetric reaction force to the 
compression force F.  (The wheels are clamped to each other around the ribbon through the structure of the climber.)  
The free body diagram neglects the losses from bearing friction and rolling friction.  This model assumes that the 
entire weight of the climber is supported by a single wheel pair.  If the climber is supported by more than one wheel 
pair, the weight is assumed to be distributed equally between all the wheel pairs, so the mc term would be divided by 
the number of wheel pairs.  This is similar in concept to the addition of locomotives to pull ever longer trains. 

                                                           
1 Owner, 818 W. Downer Place, Aurora, IL 60506. 
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An equation of motion for the climber can be written by summing the moments around the point of contact 
between the wheel and ribbon. 
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Where: 

 

M = moments summed around point of contact 
between wheel and ribbon 

R = radius of the wheel 

N = normal force between ribbon and wheel 

F = applied force compressing wheel to ribbon 

T = applied torque from drive train 

mc = mass of the climber = 900 kg 

f = friction force between ribbon and wheel 

g(r) = gravitational drag force expressed as a function 
of r, radius from the center of the Earth 
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G = Newton’s gravitational constant 

G 6.67 10
11


m

3
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2

kg
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Me = mass of the Earth 

Me 5.9788 10
24

 kg
 

 = angular velocity of the Earth about its axis 

 7.2929
10

5

sec


 
J = rotary mass moment of inertia of wheel, kg-m2 

 = rotational acceleration of wheel, sec-2 

r  = linear acceleration along ribbon 

x, y = Cartesian coordinates, y along ribbon, x perpendicular to face of ribbon 

  = Angle of rotation around the axis of the wheel, radians 
 

The contact is assumed to be rolling and not sliding, so the linear and angular positions, velocities and 
accelerations are related by the following expressions: 

Rr  ,  

 Rr   and 

 RRr    
 
Rearranging the terms of equation 1 and making the appropriate substitutions gives an equation for the torque 

required to accelerate the climber upwards with any given linear acceleration r : 

Figure 1. Free body diagram of a wheel 
pressed against the space elevator ribbon.  
The force F is balanced by the reaction 
force coming from the wheel on the 
opposite side of the ribbon. 
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The left side collection of terms (to the right of the equal sign) are the inertial terms.  These give the torque 

required to accelerate the climber from any given initial velocity to any final velocity.  The second expression in the 
sum can be thought of as the braking torque required to hold the climber on the ribbon at a point and not let it roll 
down the ribbon.  This is one of the conceptual differences between an electric car on earth and the climber on the 
space elevator.  Typically on Earth the car is not required to exert a constant torque just to stand still.  This second 
term is critical in the analysis below with real motor characteristics because it never goes away.  In constant velocity 
analyses, the r-double-dot acceleration term is zero so the the right term is the only one to consider.  As the climber 
rises, the pull of gravity declines with an inverse square relationship, but for thousands of kilometers near Earth, the 
climber must exert a significant braking torque. 

This equation is the reason that an additional track makes no sense in the design of the traction drive.  Looking at 
the free body diagram, it is clear that the friction force can only be applied at the point of contact between the wheels 
and the ribbon.  In between wheel pairs there cannot be a normal force pushing a track against the ribbon.  Without a 
normal force, there is no friction force, so no traction.  The sections of the track in between wheel pairs cannot 
contribute to the traction.  The J term is the rotary mass moment of inertia of the drive wheel/tread system.  The 
existence of a track increases J and thereby decreases the acceleration achievable when the torque is fixed at a 
maximum, while also increasing the mass of the traction drive and not contributing to traction. 

These mathematical arguments lead me to discard the track from Edward’s original design and focus on a 
traction drive with wheels only. 

To design the wheel compression mechanism that provides the force F, we must know the coefficient of friction 
between the ribbon and the wheel.  This number is not known at present and to get anywhere in the conceptual 
design, a number must be assumed. 

The friction model used here is Coulomb dry friction in which the traction does not depend on the area of 
contact, but only on the normal force and coefficient of friction as given by equation 3: 

 Nf   (3) 

where  is the coefficient of friction.  I chose to use = 0.1 as a reasonable guess at the value of the coefficient.  
Many dry sliding bearing materials show coefficients in the range of 0.01 to 0.1.  Coefficients larger than 0.2 are 
generally used between structural members designed not to slip on each other.  A coefficient larger than 1.0 usually 
means some adherence is in play between the two surfaces. 

 may have different values depending on whether the contact is sliding (kinetic friction) or not sliding (static 
friction).  The case of sliding contact is considered a failure of the climber’s traction, so the kinetic coefficient of 
friction will not be used in this analysis.  Climbers must operate in the regime up to the point of impending sliding 
and no further, so anytime the coefficient of friction appears in an equation, it is understood to be the static 
coefficient of friction. 

By summing the forces in the x and y directions, we can get a relationship between the normal force F, the mass 
of the climber, and the coefficient of friction. 
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Rearranging (4) gives 
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The traction force between the ribbon and the wheel is equal to half the weight of the climber applied to that 
wheel.  (The wheel on the opposite side provides the other half of the friction force needed to support the climber.)  
Rearranging (5) gives F = N, the normal force coming from the second wheel in the wheel pair (through the ribbon) 
is balanced by the applied force on the first wheel.   

Equation (6) describes the condition in which the weight of the climber is balanced by the friction force, but the 
friction force required is less than that calculated by equation (3).  The condition of impending sliding is required to 
allow equation (3) to be used with equation (6). Substituting F for N in (3) gives f = F which gives 

 



2
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)(

rgm
F c  (7) 

 
The graph in Figure 2 shows that the 

force required to squeeze the drive system 
around the ribbon is almost 10,000 lbs (5 
tons) if the coefficient of friction is 0.1.   

It is easy to see that if the coefficient of 
friction is too low, the ribbon will become 
unclimbable. 

Also, since the coefficient of friction 
determines the squeezing force F of the 
compression mechanism, and this force F 
has to be absorbed as tension and 
compression in the structure of the climber, 
the coefficient of friction determines the 
stress state of all of the structural elements 
of the traction drive. 

As an aside, the same equation holds for 
the 20 tonne commercial climber.  For those, 
the clamping force required is 980,000 N or 
220,304 lbf (110.2 tons).  If there are three 
wheel pairs on a commercial climber, each 
wheel pair is compressed together with a 
force of 36.7 tons.  If those compression 

mechanisms use two screw jacks as shown in the 2004 design, each one has a load capacity of 20 tons. 
Given the previous equations, we are now in a position to analyze the power and torque requirements of the 

motors on the climber for different assumptions of velocity profile of the climber. 
Edwards and Westling assumed a velocity for the climber of around 200 km/hr and a total motor power for the 

first climber of 100 kW.  Assuming that the climber climbs with constant velocity (we will ignore the acceleration of 
the climber for now,) and knowing the torque required to support the climber, the power of the motors is calculated 
from: 

  (8) 

where  
 
Pc(r) = Power required to lift the climber at constant velocity 

mc = mass of the climber = 900 kg 

ac(r) = g(r) (shown above), the gravitational drag corrected for altitude and the rotation of the Earth 

vc = velocity of the climber up the ribbon = 200 km/hr 

 

Pc r( ) mc ac r( ) vc

 
Figure 2. Graph of the compressive force required to 
squeeze the ribbon as a function of the coefficient of 
friction between the wheels and ribbon for the 900 kg 
climber. 
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The conclusion to reach from the graph is that the assumptions in the book do not work together.  The climber 

requires more than 100 kW to climb at 200 km/hr near the Earth’s surface.  The power requirement does not drop 
below 100 kW until an altitude of 7,500 km (4,660 miles) above the surface of the Earth.  (For comparison, the 
altitude of the International Space Station is 370 km (230 miles) up.  The Space Shuttle’s maximum altitude was 960 
km (600 miles).) 

If the climber is limited in power at the lower altitudes, the impact is on the travel time.  The climber will take 
much longer to get to the end of the ribbon than the simple constant velocity calculation shows.  (100,000 km at 200 
km/hr is covered in 20.83 days.) 

Another assumption in the book (page 50) is that the climber motors must operate at constant power/variable 
speed because the laser beaming system delivers constant power.  Figure 3 makes it clear that at constant velocity 
the condition of constant power is not met at all.  Even if the beam is delivering a constant power of 100 kW all the 
way up the ribbon, (which it can’t do because the beam will spread with altitude,) constant power isn’t needed over 
the whole trip up the ribbon.  Past geosynchronous orbit (GEO) the climber has to dissipate power to be able to stop.  
As shown in section IV on the wheel analysis below, the mechanism of the climber cannot handle arbitrarily high 
rotational velocities of its components. 

To see the absurdity implied in the constant power assumption all we have to do is rearrange Equation 8 for the 
case of variable velocity/constant power fixed at 100 kW. 

  (9) 

Where P = 100 kW and the velocity is now a variable.  The graph of the theoretical velocity is shown in Figure 4.  
The conclusion from this graph is that as the force of gravity declines with altitude, the climber can go faster and 

vc r( )
P

mc ac r( )


 
Figure 3. Graph of Power (kW) vs Altitude up the ribbon (km) for the case of a 900 kg climber 
moving at 200 km/hr constant speed.  Geosynchronous altitude is 3.58E4 km up the ribbon and that 
is where the climber changes from needing power to climb to needing to dissipate power to stop at 
the end of the ribbon.  The graph shows that near the surface of the Earth the power is required to 
be 488 kW for constant velocity climbing.
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faster with the constant power, ultimately reaching tens of thousands of kilometers per hour.  No climber’s wheel 
rotation mechanism can handle such large dynamic stresses. 

 

 

 
Figure 5. Graph of the power requirement (MW) of the 20 tonne commercial climber as a 
function of altitude up the ribbon climbing at a constant 200 km/hr.  Note that the Y axis is now 
measured in megawatts.  The climber needs almost 11 MW near the surface of the Earth. 

 
Figure 4. Graph of Climber velocity (km/hr) as a function of Altitude up the ribbon (km).  This 
graph has to be truncated because as the climber approaches GEO the drag force from gravity 
goes to zero and the velocity goes to infinity. 
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This theoretical analysis used no characteristics from a real motor.  The analysis becomes even more interesting 
when the motor characteristics of an actual axial gap motor are folded in as shown below. 

As an aside, it is interesting to note the power consumption of the 20 tonne climber.  This is shown in Figure 5.  
The power requirement of the big commercial climbers is not in the single digit megawatts, it is more than 10 MW. 

The power graphs make it clear that the hard work is all being done in the first 10,000 km of travel up the ribbon.  
As the climber goes above this the force of gravity becomes so much smaller that the climber does not need to 
squeeze the ribbon as hard to get traction, and it doesn’t need that much power to climb at several hundred km/hr. 

I think this is a strong argument for the use of solar power satellites to feed the climbers as soon as that is 
practical.  Before this is practical, we may have to use naval nuclear reactors like those on the French Rubis-class 
submarines that have a 48 MW reactor. 

Using the theory we can take a look at the conceptual design and its weight problem. 

III. The Mass Budget of the First Construction Climber and the Mass Problem of the 2004 
Conceptual Design 

A rendering of the 2004 conceptual design is shown in Figure 6.  The design of the ribbon climber in this paper 
assumes the mass distribution from Table 3.2 of “The Space Elevator” by Edwards and Westling2 as the design goal.  
(Shown here in Table 1.)  One goal of the paper is to determine how the original conceptual design of the drive 
system can be modified so that this re-design is within the mass budget in the table of less than 233 kg.  The number 
233 kg comes from adding the masses of the Motors, Track and Rollers, and Structure in the table. (The drive 
system must be less than this number because the entire structure budget cannot be consumed by the traction drive 
system alone.) 

 
The bottom line of the conceptual design from 2004 is that it could not satisfy the mass budget specified by 

Edwards and Westling.  It was too heavy by a factor of 2.4 with 20 kW motors and 3 with 50 kW motors. 

 
Figure 6. Overall view of the original conceptual design presented in 2004.  Design shown is made up of 
three floating axle drive modules and three fixed axle drive modules.  The drive modules are connected to 
each other by structural weldments.  The blue circular segments represent the photovoltaic (PV) planes.  
No structure is shown connecting the traction drive and the PV plane. 
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Looking at Table 1, we see that the motors represented almost 56% of the 233 kg budget for the drive train.  
Table 2 shows that the mass of the motors I found in 2004 made up only 13% of the total mass of the design, and 
were two thirds of the allowed budget in Table 1.  The fact that the motors I used were lighter than the budget for the 
traction drive meant that the structure was the problem in reducing the mass of the drive.  The mass of the 
conceptual design without the motors was 562.5 kg and the budget for this mass was less than 106 kg.  The structure 
needed to be reduced in mass by a factor of 5.3. 

Also looking at Table 2, the largest contributions to 
the mass of the traction drive are in the last two lines.  
Almost 43% of the mass of the conceptual design is in 
the compression mechanism and structure of the 
floating wheel modules.  Reducing the mass of this part 
of the traction drive has the biggest effect on the total 
mass. 

The simplest question to ask is, assuming the 
strengths of different materials are the same so that the 
structural members are the same size, is there a 
material less than 1/5 of the density of the aluminum 
used in the 2004 conceptual design?  Looking at Table 
3, there are several candidates lighter than aluminum, 
but only one is lighter than 1/5 of the density of 
aluminum.  Aerographite cannot really be considered 
similar in strength to aluminum because its ultimate 
tensile strength is only 23.2 psi.  It is a very flexible 
and weak material.  Among the metals, the lightest 
structural metal is magnesium, but it is 0.66 the density 
of aluminum, not the needed 0.19.  Carbon composite 
fares slightly better at 0.6 times the density of 
aluminum and similar strength. 

So the simple answer to the simple question is “no”.  
The structure will have to be reduced in cross-section 

and made of a lighter and stronger material to achieve the weight reduction.  Since the original structure was not 
analyzed for its structural efficiency, it is possible that significant reduction is possible while keeping the material 
aluminum. 

 

Table 2. Percentage of the total weight of the major components of the conceptual 
design 

 

Description of climber components: 

Climber 
with 20 kW 

motors 

% of 
total 
mass 

Mass of 12 self-aligning bearings, kg 16.2 2.51% 
Mass of axles, kg 32.1 4.96% 
Interface structural material, kg 51.2 7.91% 
Mass of 6 wheels, kg 52.7 8.15% 
Mass of 6 Schmidt couplings, kg 62.6 9.68% 
Mass of structure in 3 fixed wheel modules, kg 70.7 10.94% 
Mass of 6 motors, kg 84.0 12.99% 
Mass of 3 pairs of compression mechanisms, kg 136.1 21.04% 
Mass of structure in 3 floating wheel modules, kg 141.0 21.81% 

Total mass of climber traction drive: 646.5 100.00% 
 

Table 1.  Mass distribution of components of the 
first construction climber 

 
Component Mass (kg) 

Ribbon 520 

Attitude Control 18 

Command 18 

Structure 64 

Thermal Control 36 

Ribbon Splicing 27 

Power Control 27 

Photovoltaic Arrays 

(12 m2, 100 kW) 

21 

Motors (100 kW) 127 

Track and Rollers 42 

TOTAL 900 
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At the time of the original design one of the 
design constraints was that the size of the wheels 
on the climber was determined by limiting the 
number of revolutions of the wheel to 150 million 
revolutions to get to the end of a 100,000 km long 
ribbon.  This number of revolutions was thought a 
reasonable upper limit based on the available 
fatigue data for many materials.  Data beyond 
1.5E8 cycles was not commonly available.  With 
the advent of ultrasonic fatigue testing3, materials 
can be tested to >1E9 cycles in a few days.  This 
gives a new regime of information about the 
behavior of cyclically loaded materials. 

To achieve the wheel rotation limit of 1.5E8 
revolutions, the wheels must be larger than 8.35 
inches.  Wheels smaller than that will rotate more 

times to get to the end of the ribbon.  In the 2004 conceptual design, the wheel diameter was raised to 12.87 inches 
based on an analysis of Hertzian contact stress in the wheels. 

Given how much the mass of the climber had to be reduced, I decided to examine in detail the design assumption 
of the number of rotations of the wheel to see if decreasing the diameter of the wheels could cause the rest of the 
structure around them to be shrunk as well. 

Using the new data on high cycle fatigue, assume for the moment that we can allow the wheels to rotate 5 x 108 
times or more.  The diameter of the wheel comes from the following equation: 

  (10) 

Where:
 
 

D = wheel diameter 

L = Length of the ribbon = 100,000 km 

n = Allowed number of rotations of wheel = 1.5E8 

 
Plugging these numbers in gives a wheel diameter of 2.5 inches, much smaller than before.  If we want to move 

the climber at 200 km/hr, how fast is this wheel rotating?  The answer is 16,709 RPM and this is where the problems 
start.  Axial gap motors in the power range that I have found cannot rotate that fast.  The maximum rotation rate I 
found is 2400 RPM at maximum power. 

As the FEA below shows, the effect of the dynamic stress from the wheel rotation is very significant.  It is 
unlikely that we will be able to design a wheel-motor system that can rotate as fast as 10,000 RPM.  The dynamic 
stress quickly exceeds the fatigue limit of the metals in consideration. 

If we calculate the speed of the climber with 2.5 inch wheels rotating at only 2400 RPM, the climber will climb 
at a measly 28.7 km/hr.  This is unacceptable for the economics of the space elevator.  At 28.7 km/hr, the trip to the 
end of the ribbon takes 145 days, or 4.8 months. 

Figure 7 shows how the number of revolutions of the wheel to get to the end of the ribbon depends on the wheel 
diameter.  At 6.25 inches in diameter, the wheel rotates just over 200 million times to get to the end of the ribbon.  
The number of revolutions increases dramatically below this diameter requiring very high cycle fatigue testing of all 
of the wheel and axle materials. 

The wheel revolution speed is calculated from the velocity of the climber and the wheel diameter: 

  (11) 

Where RPM is the revolutions per minute of the wheel, v is the velocity of the climber and D is the wheel 
diameter.  Figure 8 shows how the wheel revolution speed depends on the wheel diameter for a fixed climber 
velocity such as 200 km/hr.  As we’ll see below, any wheel rotation speed of 10,000 RPM or higher is probably not 
allowed by real materials and wheel size that gives adequate climber speed.  Figure 9 shows a graph of the climber 
velocity as a function of wheel diameter holding the wheel rotation speed fixed at 2400 RPM. 

D
L

 n


RPM D( )
2 v
D



Table 3. Various engineering materials in comparison 
to aluminum. 

Material 
Density, 

lb/in3 

Ratio of 
density to 

Al 
Aerographite 3.07E-04 0.003 
Carbon composite 0.058 0.592 
Magnesium AZ80A-T5 0.065 0.663 
Beryllium 0.067 0.682 
Al 6061-T6 0.098 1.000 
Titanium, Ti-8Al-1Mo-1V 0.158 1.612 
Titanium, Ti-6Al-4V 0.160 1.633 
SS 321 0.290 2.959 
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Figure 8. Graph of the Wheel Revolution Speed (RPM) vs Wheel Diameter (inches) at the 
constant climber velocity of 200 km/hr.  As the wheel decreases in diameter, it must rotate 
faster and faster to keep the climber moving at 200 km/hr.  If we have to limit the wheel 
rotation speed to 10,000 RPM, the wheel must be larger than 4 inches in diameter. 

 
Figure 7. Graph of the Number of Revolutions of the Wheel to get to the end of the Ribbon 
vs Wheel Diameter.  As the wheel decreases in diameter it takes many more revolutions to get 
to the end of the ribbon.  Fatigue strength of every material decreases with increasing cycles 
of stress.  Practical wheels are probably not less than 6 inches in diameter. 
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Going back to Equation 2, we see that the braking torque required of the motor is directly proportional to the 

radius of the wheel.  This makes sense.  The weight of the climber gets supported by the ribbon through the wheel.  
The load path for the weight of the climber goes to the bearings on the axle, then through the axle to the hub of the 
wheel.  The larger the wheel, the further away the load is from the ribbon, so the larger the torque required to keep 
the wheel from rotating. 

Motors have a peak torque, or locked rotor torque.  This is the amount of torque the motor can apply at zero 
rotational speed to keep the wheel from turning.  From the motor’s perspective, it wants the wheel to be small in 
diameter so that it doesn’t need much torq ue to keep the wheel still.  Real motors also have a maximum rotation 
rate (determined by the voltage of the controller) and smaller wheels cause the climber velocity to be lower.  Table 4 
shows the characteristics of two different axial gap motors from NuGen Mobility, Inc4.  The mass of these motors is 
not relevant for the following analysis and they are just used as examples of motors in the right power range. 

 

 
I do not have a complete torque-speed curve for these motors, so a calculation is needed to determine the running 

torque at maximum speed.  The peak torque is fine for a climber that is motionless on the ribbon, but the braking 
torque term of Equation 2 never goes away.  We need to make sure that the torque available from the motor at 
maximum rotation speed is large enough to keep the climber from rolling backwards down the ribbon.  This analysis 
shows the tight coupling between the motor torque, the wheel size and the speed of the climber up the ribbon. 

The climber is designed with a motor on each wheel.  There are six wheels in the conceptual design.  This means 
that the total power of the climber is 132 kW if each motor is 22 kW, and 600 kW if each motor is 100 kW.  Having 

Table 4. Characteristics of two axial gap motors from NuGen Mobility, Inc. 

Motor Characteristic MDF240 motor MDF375 motor 
Peak Power, kW 22 100 
Cont. Power, kW 12 60 
Peak Torque, N-m 110 740 
Speed @ Max. Power, RPM 2100 2400 
System efficiency 91% 95% 

 

 
Figure 9. Graph of the Climber velocity as a function of wheel diameter if the wheel 
revolution speed is fixed at 2400 RPM.  We need a climber velocity above 150 km/hr to make 
the Space Elevator economical to build and operate. 
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the smaller size motor on each wheel is similar to the 100 kW assumption of the first construction climber in 
Edwards’ and Westling’s book.  (Figure 3 means if we have any hope of running the climber at 200 km/hr near the 
surface of the Earth, then we need motors closer to the 100 kW rating than the 22 kW rating.) 

The continuous torque for the MDF240 motor is calculated by taking the continuous power divided by the 
rotational speed.  This comes out to 54.6 N-m.  By rearranging Equation 2 assuming that there are 3 wheel pairs in 
the climber and the angular acceleration is zero, the size of the wheel comes from: 

   (12) 

Where g(RE) is the gravitational acceleration at the surface of the Earth, 9.8 m/s2.  Tcont is the continuous torque 
the motor can deliver.  Plugging all the numbers in gives: 

R ≤ .037 m = 1.46 inches, or a diameter of the climber wheel, D ≤ 2.92 inches.  This is much less than the 12.8 
inch diameter wheel in the conceptual design.  If the rotational speed of the motor is 2100 RPM, then the velocity of 
the climber up the ribbon with this size wheel is only 29.4 km/hr. 

The conclusion from the previous calculation is that the 22kW motor does not have either the power or the 
torque required to make the climber climb at a reasonable speed.  Now let’s see how the numbers add up for the 
larger motor. 

The continuous torque for the MDF375 motor comes out to 238.7 N-m.  Applying Equation 12 again, R ≤ .162m 
= 6.39 inches.  The wheel diameter is D ≤ 12.79 inches.  This is very close to the size of the wheel determined for 
the conceptual design based on Hertzian contact stress criteria. 

The maximum velocity of the climber with this size wheel rotating at 2400 RPM is 146.6 km/hr.  This is less 
than the desired 200 km/hr, but not that far off and there may be a way to make up the difference at higher altitudes 
as shown below. 

The next section shows the evolution of the wheel and axle concept and the importance of the dynamic stress. 
One conclusion from the calculation with the larger motor is that the wheel does not shrink in diameter 

significantly if the criteria of climber speed and fatigue stress are to be satisfied.  Mass reduction must come from a 
thorough analysis and redesign of the structure. 

IV. Wheel and Axle FEA and Re-design 
In 2004 I did not own finite element analysis software.  The wheel analysis that was done at the time was done 

through the favor of a friend.  I have since converted the original Mechanical Desktop model of the climber to 
Autodesk Inventor and now have the finite element package inside Inventor Professional to use.  This allows many 
variations to be tested quickly and for free.  The next figures show the stress analysis of the wheel and axle with a 
series of changes intended to reduce the mass.  Since the diameter of the 2004 design was so close to that calculated 
above, I am using the 2004 model for simplicity. 

With a coefficient of friction of 0.1 and three wheel pairs, the force compressing each wheel is 3,333 lbs.  
Applying this force to the zone of contact of the wheel and constraining the axle at its bearings gives a stress 
distribution in the 2004 design as shown in Fig. 10. 
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The bending of the rim of the wheel is an artifact of the way I am constraining the model. 
If I reduce the wall thickness of the shaft to 0.25 inches, the following stress distribution is calculated: 

 

 
Figure 11. Wall thickness of hollow axle shaft is .25 inches.  The maximum stress is still at the edges of 
the wheel and is an artifact of modeling.  Stress in the axle has increased to about 5 ksi maximum near 
the bearings.  Reducing the shaft wall more would violate the stress criterion. 

 
Figure 10. Von Mises stress in the axle and wheel of the 2004 design.  This model has no rotational 
velocity on the wheel.  The wall thickness of the aluminum axle is 0.5 inches, which causes the axle 
stresses to be very low, <3 ksi.  The fatigue allowable for Al 6061-T6 is 6.5 ksi at 1.5E8 cycles of 
reversed bending.  (All of the FEA pictures show scaled exaggerated distortion from load.) 
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It is clear that most of the web of the wheel is under very low stress.  The material used in the model for the 
wheel is Ti-6Al-4V, a common titanium alloy.  Its fatigue strength is much higher than aluminum, 43.5 ksi at 50% 
confidence at 1E7 cycles of fully reversed bending5,6.  I do not have data for this material at 1.5E8 cycles, so that 
could be an issue with using titanium for the wheels.  If this titanium alloy survives that many cycles, the stress at 
97.5% confidence is certainly much less than 43.5 ksi. 

The importance of fatigue to the wheels and axles cannot be overstated.  Rolling elements experience fully 
reversed bending stress which is the most damaging kind of cyclic stress.  The rest of the structure that does not roll 
but carries tensile and compressive stresses can be analysed with static stress models.  Fatigue does not play a 
significant role in the design of the non-rotating structure.  Fatigue failure of the rolling elements can lead to chunks 
of the wheel rim spalling out and damaging the ribbon, or the axle cracking and destroying the entire climber and 
possibly the ribbon as well.  Fatigue is why the allowable stress in the materials of the axle and wheel must be 
derated so far below their static stress values. 

Figure 12 shows the effect of removing material from the web.  The concept was to remove material that was at 
very low stress to improve the efficiency of the material in handling load.  To successfully reduce the mass of the 
climber, every part needs to carry as much load as it can without exceeding fatigue allowable stress for rolling parts 
and static stress allowables for non-rolling parts. 

Figure 13 shows the deflection of the wheel and axle from the compressive load.  Axle bending was the reason 
for selecting self-aligning bearings to support the axle so that the angle made by the bent axle did not overstress the 
bearings. 

Figures 14, 15 and 16 show the effect of dynamic stress on a freely spinning wheel from the rotational speed of 
the wheel.  As discussed below, rotational speed causes dynamic stress that increases very rapidly with speed and 
ultimately limits how fast wheels and motors can rotate. 

Figures 17 and 18 show the combination of the dynamic stress from rotation and the compressive force required 
to get traction on the ribbon.  Figure 17 shows the stress at 2400 RPM and Figure 18 shows the stress at 10,000 
RPM. 

Shigley7 shows the radial and tangential stresses in a rotating ring such as the wheel to be: 

  (13) 

  (14) 

Where: 
σt(r) = tangential stress in the ring as a function of radius, r 

σr(r) = radial stress in the ring as a function of radius, r 

ν = Poisson’s ratio for the material of the ring 

ρ = density of the ring material 

ω = rotational speed of the ring in radians per second 

ri = inner radius of ring 

ro = outer radius of ring 

These equations are for a uniform thickness ring whose outside radius is much larger than its thickness.  They are 
illustrative because the stress is a function of the rotational speed squared.  In going from 2400 RPM to 10,000 
RPM, we are increasing the speed by a factor of 4.2 and the stress by a factor of 17.4.  This is born out by the 
maximum stress numbers in Figures 14 and 15.  In going to 40,000 RPM, the speed is increased by a factor of 16.7 
and the stress by 277.8.  The maximum stress shown in Fig. 16 of 519 ksi exceeds the strength of any metallic 
material the wheels and axles could be made from.  That is why the wheels and motors cannot rotate at an arbitrarily 
high speed. 
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Figure 12.  The maximum stress is shown at the weakest part of the rim of the wheel where material 
has been removed and peaks at 33.5 ksi, near the 50% confidence fatigue limit of the material.  As the 
wheel rotates, the compression force is alternately applied to the area between the spokes, and then to 
the spokes.  Compression of the spokes needs to be analyzed using buckling stress allowables instead of 
static stress allowables.  Buckling is a geometry dependent failure mode unrelated to the static strength 
of the material.  Buckling can cause failures at very low stresses because the buckling stress allowable is 
reduced as the spoke becomes more slender. 
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Figure 14.  Plot of Von Mises stress for a wheel spinning under no load at 2400 RPM.  The 
maximum dynamic stress is in the fillets of the web cutout.  This stress might not be possible to 
ignore since the material is in fatigue loading.  Stress concentrations lead to fatigue crack growth in 
cyclic loading, where in static stress the material yields locally and the stress can be neglected.  The 
stress is reasonably low at 2400 RPM. 

Figure 13.  Plot of the deflection of the wheel and axle from the compressive load.  The green shade of 
the wheel shows that the compressive force bends the axles by about 0.008 inches.   
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Figure 16.  Plot of Von Mises stress for a wheel spinning under no load at 40,000 RPM.  The 
maximum dynamic stress is now 519 ksi.  This is higher than any engineering material can 
withstand. 

 
Figure 15.  Plot of Von Mises stress for a wheel spinning under no load at 10,000 RPM.  The 
maximum dynamic stress is still in the fillets of the web cutout but is now 32.44 ksi, close to the 50% 
confidence fatigue allowable for titanium.  It is not known if it exceeds the 97.5% confidence level. 
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Figure 17.  Plot of Von Mises stress for a wheel spinning at 2,400 RPM with the compressive load 
of 3,333 lbs applied .  The maximum dynamic stress is 33.05 ksi on the rim at the point of contact.  
Because of limitations in the finite element software, these analyses neglect some forces and stresses 
that need to be evaluated.  The Hertzian contact stress8,9 at the point of contact is not accurately 
modeled here because the mesh is too coarse and the concentrated load does not model the true 
nature of contact between wheels.  Tractive stress is also not considered here.  During the 
acceleration of the wheels there are additional inertial terms that increase the stress.  All of these 
factors must be included to verify that the wheel is safe to rotate at its maximum speed (and are not 
covered here.) 
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A much more careful analysis has to be done to verify that a wheel can be as large as 12.8 inches in diameter and 

rotate at 10,000 RPM.  This analysis shows the tight interrelationship between wheel size, motor torque, friction of 
the ribbon and the speed of the climber.  More different designs and materials will also need to be considered to 
minimize the mass of the wheels and axles.  This analysis was purely static stress and used the simplest 
modifications to the original CAD model.  This kind of finite element analysis does not address the possibility of 
buckling the spokes of the wheel from compressive stress.  That is an additional necessary analysis not begun here.  

If the rotational velocity of the motor and wheel can be increased to 10,000 RPM, the speed of the climber with 
12.8” diameter wheels will be 610.7 km/hr, well over anything considered so far. 

One complication of running the climber at higher speed at higher altitude on the ribbon is that the ribbon 
splicing mechanism (which is the whole purpose of the construction climbers,) would have to be able to handle the 
increased speed.  The implications for this mechanism are beyond the scope of this paper. 

In summary, the original combination of an aluminum axle and a titanium wheel weighed 31.0 lbs.  The new 
lighter design weighs 21.9 lbs.  This is a reduction of 29.4% on components that represented only 13.11% of the 
weight of the traction drive system.  As mentioned before, much more work has to be done to drastically reduce the 
mass of the compression mechanism and its structure. 

V. The Problem of the Axial Gap Motors 
Edwards and Westling proposed that the most efficient motor for the climber is an axial gap electric motor.  

Qualitatively, the difference between a conventional radial gap motor and an axial gap motor is that conventional 
motors are smaller in diameter than they are long.  The magnetic field that rotates the rotor is radial.  An axial gap 
motor is short along its output shaft axis and large in diameter.  The magnetic field is axially oriented.  Axial gap 

 
Figure 18.  Plot of Von Mises stress for a wheel spinning at 10,000 RPM with the compressive load 
of 3,333 lbs applied .  The maximum dynamic stress is 38.33 ksi on the rim at the point of contact. 
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motors are very common in devices such as the disk drives of computers.  They are very efficient and compact, 
however, as Equations 13 and 14 show, because they are larger in diameter than radial gap motors, the stress in the 
rotor will be higher for a given rotational speed than it would be in a radial gap motor.  Stress increases as a squared 
function of the radius of the motor.  Motors in the 20kW range and up have been designed and built, but have yet to 
see widespread commercialization.  I have found a source for motors up to 100kW for hybrid and electric vehicle 
use from NuGen Mobility, Inc.  Examples of how the real motor parameters effect the climber design are shown 
above in section IV. 

When I began the conceptual design of the climber back in 2004, I contacted Rick Halstead of Empire 
Magnetics, Inc as that company is known for motors that are designed for severe environments such as vacuum and 
radiation.  At the time, Rick was very interested in developing axial gap motors and gave me information about his 
conceptual design of 20 and 50 kW motors.  Electric cars are an ideal market for motors in that power range.   

I contacted Rick in March of 2013 in preparation for this paper and the outlook on the commercialization of large 
axial gap motors looked bleak.  In Rick’s words, the “Great Recession” of 2008 caused “everybody to retrench as 
opposed to expanding.  In addition, the fact that the Chinese forced the price of rare earth magnets up over 700% 
(they have fallen back so now its only about 350%) put a real damper on axial gap developments as they are magnet 
intensive.” 

I found information on the web about a motor designed using an SBIR grant by Launchpoint Technologies.  This 
motor is for aerospace use and has dual Hallback arrays of magnets in the rotor and stator.  It is claimed to be the 
highest power density motor available, but it has only been prototyped in a 6 inch diameter.  The concept looks very 
promising. 

As I pointed out in 2004, the motors for the space elevator will be custom designed for the many different harsh 
environments they will see and that design process and prototyping will be expensive.  Without knowing the torque-
speed curve for the motors, it is impossible to fully characterize the acceleration of the climber or calculate precisely 
how long the trip to the end of the ribbon will take. 

Figure 19 uses all of the motor data I’ve been able to collect on the mass of the motor as a function of motor 
power.  It is obvious from the chart that there is a very wide spread in the estimates of motor mass.  The blue data 
from NuGen Mobility, Inc is actual motor data, not estimates.  Unfortunately, it also represents the heaviest motors 
for the power.  Eric Takamura of NuGen pointed out to me that there is a poor correlation between motor mass and 
power because there are so many variables that effect the power of a motor.  The two points of the same mass on the 
blue curve at 7.5 and 9.5 kW are caused by changing the voltage of the motor controller from 48V to 72V. 

 

 
Figure 19. Graph of motor mass as a function of power from 
several different sources.   
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NuGen also has a controller technology developed for solar car motors that could be very useful to the Space 
Elevator given the dramatic differences in the power and torque required as a function of altitude.  They have 
developed a controller that can change the effective ratio between the torque and the output speed of their motors.  
This means that the same physical motor can have very different torque/speed curves.  The controller can decrease 
the torque by up to a factor of 2.7 and increase the speed of the motor by 2.7.  At low altitude, the motor can be run 
in a lower speed higher torque regime, and then as the gravitational drag drops off the motor can accelerate to a 
higher speed, lower torque and make up the time lost at low altitude. 

The green line in the graph comes from the motor powers and masses quoted in reference 1.  I do not know 
where Edwards and Westling got their estimated motor data from. 

The red line in the graph is information provided to me in 2004 by Rick Halstead of Empire Magnetics.  It is 
possible that the mass estimate shown did not include every feature of a real motor, but was based on the major 
components like the conductors and magnets. 

Both NuGen Mobility and the Launchpoint website discuss some of the variations that can be done to minimize 
the mass of a motor, such as replacing the structural parts with carbon composites. 

It is clear at this point that we do not know the mass of the motors that need to be custom designed specifically 
for the Space Elevator, so it is not possible to know right now if they satisfy the mass budget of the first climber.  
From discussion with Eric of NuGen, it is also clear that the motors shown in the 2004 conceptual model are roughly 
the right overall size for the power needed.  The mass reduction will come from changing materials, not changing 
size.  I am encouraged by some of the ideas I found for controller technology and motor construction materials that 
it is still within the realm of possibility to satisfy the mass budget. 

VI. The Climber and the Safety Factor of the Ribbon 
In 2004, Eric Westling was kind enough to provide the spreadsheet that sized the initial ribbon.  Figure 20 shows 

a screen shot of the spreadsheet.  The equations to analytically calculate the cross-section of the ribbon are very 
complex and difficult to solve, but the problem is amenable to finite difference methods using a spreadsheet to break 
the ribbon into segments.  The spreadsheet breaks the ribbon into 100 km long segments and calculates the tension 
in the segment starting at the Earth’s surface with the climber hanging motionless on the ribbon.  The force from the 
weight of the 900 kg climber is applied at the bottom edge of the first segment, putting it into tension.  The force 
applied at the bottom edge of the next segment up is the tension in the previous segment plus the mass of the 
previous segment multiplied by the average acceleration due to gravity between the top and bottom of the previous 
segment.  The averaging of g is necessary as g decreases up the height of the ribbon. 

Once the row has calculated the value for g at a given altitude and the tension force in the segment, the 
spreadsheet uses a safety factor of 2 on the tensile strength of the ribbon (130 GPa) to calculate the cross-sectional 
area of ribbon necessary to carry the tension.  The spreadsheet then calculates the mass of the ribbon up to the given 
altitude by calculating the volume of the ribbon segment (cross-sectional area times length of segment,) multiplied 
by the density of carbon nanotubes (1300 kg/m3,) multiplied by the average acceleration due to gravity and adding 
that to the mass calculated in the cell above.  The acceleration due to gravity is the g(r) term defined for Equation 1 
above and containing the correction for the rotation of the Earth. 

The next two columns of the spreadsheet are used to calculate the total launched mass and the weight of the 
counterweight needed at the end of the ribbon. 

The spreadsheet was constructed to allow a space elevator to be designed for many planets and moons in our 
Solar System.  The information about the other bodies besides the Earth was hidden before taking the screen shot to 
reduce the clutter in the image. 

It is very difficult to calculate anything analytically about the space elevator because everything changes as a 
function of altitude.  The force of gravity is decreasing as 1/r2, but the centrepital force increases with r, eventually 
overtaking gravity and causing the climber to be thrown away from Earth above geosynchronous orbit.  The cross-
sectional area of the ribbon is minimum at the surface of the Earth, grows to its maximum area at GEO, then 
decreases again out to the end of the ribbon.  The spreadsheet does all these things in a very clever way with only 
small errors coming from the segment size. 

Because all of these things are changing continuously, it is important to remember that everything is local on the 
space elevator.  The mass of the counterweight is only that which is needed to balance the tension in the ribbon 
immediately below it. 

The only problem I see with the way the elevator is sized in the spreadsheet is that there is no allowance for the 
acceleration of the climber.  The effective weight of the climber is its gravitational weight plus its inertial weight 
from acceleration.  If the climber were to suddenly accelerate upward at one gee, the climber would effectively 
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weigh twice as much to the ribbon and the safety factor would be consumed.  In designing the Space Elevator for 
real, I would modify the first term in the spreadsheet to include both the weight of the climber and its maximum 
acceleration near the surface of the Earth.  This will cause the pilot ribbon to be a little more massive (higher tension 
leads to larger cross-sectional area of CNTs,) but slightly more conservative in design.  Since the Space Shuttle has 
been decommissioned, the payload of the Shuttle is no longer a factor in the design of the pilot ribbon.  Some other 
rocket will be necessary to boost the first ribbon to Low Earth Orbit (LEO).  Given this fact, I would also eliminate 
the double spool described in the book and boost a single pilot ribbon to LEO. 

 

VII. General Comments on Climber Design 
In thinking about the climber suspended from the ribbon 

it helps to think about the way heavy objects are rigged from 
cranes.  The key fact of any rigging job is that the center of 
gravity (C.G.) of the load will always be directly below the 
lifting point.  The crane hook and the cable cannot support a 
bending moment, so the load will just rotate downward until 
the C.G. is directly below the hook and there is no moment. 

This fact was obvious in one of the photos of the toy 
climber competition at the 2011 Space Elevator Conference.  
Figure 21 shows what happens to the ribbon when the 
climber’s center of mass is not centered on the ribbon.  The 
ribbon cannot support a bending moment, so the ribbon 
must be deformed until there is a balance of forces between 
the tension in the ribbon and the moment caused by the 
offset C.G. 

Another important point to keep in mind is that besides 
being centered on the ribbon, the center of mass must also 
be below the traction drive.  If a climber is loaded above the 
traction drive, even if the C.G. is centered, it is metastable.  
Any perturbation of the climber will cause the climber to try 
to capsize until the C.G. is below the traction drive.   

This raises the interesting question about what happens 
to a climber above GEO.  Effectively, above GEO the 
climber is upside down if its center of mass is closer to the 
Earth than the traction drive.  It is in a metastable 
configuration.  It is not clear to me whether the centrepital 
acceleration above GEO is low enough that it cannot capsize 

 
 

Figure 20. Screen shot of the Excel spreadsheet that sized the pilot ribbon of the Space Elevator. 

 
Figure 21. Model climber on the tether with 
the center of mass off to one side of the ribbon.  
The climber is distorting the ribbon to put the 
center of mass directly under it. 
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the climber against the tension in the ribbon. 
One possible way to avoid that instability is if the climber is capable of reconfiguring itself above GEO.  If the 

payload were on a linear bearing track that allowed it to take positions above or below the traction drive, it could 
switch positions above GEO.  The details of this would depend on the payload.  Any linear bearing system would 
reduce the available mass for the payload. 

VIII. Conclusion 
It was not possible to definitively determine whether the 2004 conceptual design of the first climber can be 

lightened enough to satisfy the mass budget in Edwards’ and Westling’s book.  Further work has shown that there is 
a narrow range to the practical diameter of the wheels on the climber.  Wheels that are too small would have to spin 
too fast and too many times to lift the climber at useful speed.  Wheels that are too large cause the braking torque of 
the climber to be too high for practical motors and their dynamic stress becomes too large for real materials. 

The climber will need more power than previously estimated to climb at useful speeds.  It will require clever and 
detailed engineering to design motors in the appropriate power range that are light enough to satisfy the mass 
budget.  Right now nothing certain can be said about the mass of a 100 kW motor for the Space Elevator. 

Fatigue of the rolling elements of the climber must be in the mind of the designer at all times.  The 100,000 km 
long ribbon requires the climbers to live most of the life of an Earth electric car within one month and one trip with 
no repair stations. 

The structure around the compression drives of the floating axle modules in the 2004 design is where the bulk of 
the structural material is and where the greatest effort is needed in redesign to lower this mass. 

The drag force of gravity pulling the climber down the ribbon drops off very quickly with altitude up the ribbon.  
Given the very large power and torque capability necessary near the surface of the Earth, the climbers may be able 
to accelerate well past 200 km/hr at the higher altitudes, as long as the fatigue strength of the rolling components is 
not exceeded.  The trip to the end of the ribbon will not be at either constant velocity or constant power, but the best 
mix of power and speed to make the total trip length practical. 
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